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Talk OutlinesTalk Outlines

• Introduction
– Background
– Previous works of object-based dynamic tomography
– Curve evolution and level set methods

• Our approach 
– Geometric object-based scene modeling
– Shape dynamics for temporal boundary smoothness 
– Variational reconstruction with curve evolution and 

level set methods

• Extensions
– Learning shape dynamics & Shape matching
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IntroductionIntroduction
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Scenario of Dynamic TomographyScenario of Dynamic Tomography

• Time varying  f(x,k), 2-D or 3-D
• Noisy tomographic projection data yk , for example, line 

integration
• Limited view angles at each time: 1~3
• Observation angles change over time
• Goal: reconstruct f from y
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Motivating ApplicationsMotivating Applications

• Nuclear medicine
– PET(Positron Emission

Tomography)
– SPECT (Single Photon 

Emission Computed
Tomography)

– First pass and equilibrium 
blood pool imaging. 

– Myocardium perfusion 
imaging.

• Imaging of explosive events

A 3-head SPECT



6

Interest in Problems Where:Interest in Problems Where:

• Characteristics
– Scenes composed of few discrete “objects”
– Interest in object localization/characterization
– Simple “textures” or less interest in texture

• Challenges
– Data are sparse and noisy
– Tomographic operator is ill-posed
– High dimension: 2-D or 3-D image sequence

Challenging Inverse Problem!Challenging Inverse Problem!
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Previous Works: Object-based 
Dynamic Tomography

Previous Works: Object-based 
Dynamic Tomography

• P.C.Chiao, W.L.Rogers, N.H.Clinthorne, J.A.Fessler, and 
A.O.Hero, 1994
– Cardiac PET study with a polygonal model
– Joint estimation left ventricle boundary and dynamic intensity 

parameters
– Known topology and static boundary
– Static tomographic scenario with multiple  projections

P.C.Chiao, W.L.Rogers, N.H.Clinthorne, J.A.Fessler, and A.O.Hero, 
“Model-based estimation for dynamic cardiac studies using ECT”, 
IEEE Trans Medical Imaging, 1994.
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• G.S.Cunningham, K.M.Hanson, and 
X.L.Battle,1998:
– First pass blood pool imaging of the right ventricle of 

an artificial heart from very noisy SPECT data
– 3-D  triangulated surface model evolves over time
– Difficult to handle topological changes
– 24 view obtained at each time
– No temporal modeling of object boundary

G.S.Cummingham, K.M.Hanson, and X.L.Battle, “Three-
dimensional reconstruction from low-count SPECT data using 
deformable models”,Optics Express, 1998.
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• Tom Asaki and Kevin Vixie, 2002
– Reconstructing a parameterized evolving curve
– Single angle projection at each time
– No topological changes and temporal modeling

Tom Asaki and Kevin R. Vixie, “Reconstruction of evolving , 
non-convex curves from a sequence of single angle projections”, 
1st SIAM Imaging Science Conference, Boston, 2002.
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Curve Evolution MethodsCurve Evolution Methods

• Snake

• Edge-based Active Contours

• Region-based Active Contours
T.F. Chan and L.A.Vese, “Active contours without edges”, IEEE Trans Image 
Processing, 2001.

A.Tsai, A.Yezzi, and A.Willsky, “Curve Evolution Implementation of the Mumford-
Shah Functional for Image Segmentation, Denoising, Interpolation, and 
Magnification”, IEEE Trans Image Processing, 2001.

V. Caselles and R. Kimmel and G. Sapiro, “Geodesic Active contours”,IJCV, 1997.

M.Kass, A. Witkin and D. Terzopoulos, “Snakes:active contour models”, IJCV,1988.
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• S.Osher and J.A. Sethian
– Implicit shape representation
– Solving PDEs to evolve 

curves, surfaces
– Easy topological changes
– Geometric quantity easy to 

compute

Level Set MethodsLevel Set Methods

NF
dt
dC r

= 0=∇+ φ
φ

F
dt
d

S.Osher and J.A.Sethian, “Fronts 
propagation with curvature-dependent 
speed: algorithms based on Hamilton-Jacobi
formulations”, Journal of computational 
physics, 1988.
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• Introduction
– Background
– Previous works of object-based dynamic tomography
– Curve evolution and level set methods

ØOur approach 
– Geometric object-based scene modeling
– Shape dynamics for temporal boundary smoothness 
– Variational reconstruction with curve evolution and 

level set methods

• Extensions
– Learning shape dynamics & Shape matching
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Our ApproachOur Approach

• Geometric object-based scene modeling
– Continuous curves, surfaces for object boundary
– Observation model based on geometric scene modeling

• Modeling object temporal dynamics
– Shape dynamics for temporal boundary smoothness to 

improve robustness to data sparsity and noise
• Unified variational formulation

– Curve evolution methods for joint estimation of 
boundaries and intensities

– Apply level set methods to infer topological uncertainty
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Scene Modeling Scene Modeling 

Boundary Curve: Ck
Object Region: ΓCκ
Background region:  Ω\ΓCκ

Intensity parameter: βk

( , ) ( ) (1 ( ))o b
k k k kf x k r x r xβ β= + −

Region indication function

• Unknowns to estimate for reconstruction: 
–Boundary sequence: C = [C1, C2, …, CK ]
–Intensity sequence: β = [β1, β2, …, βK ]
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Observation ModelObservation Model

i-th sample at time kObservation 
angle changes 
over time

\
( ) ( )

C Ckk

i o i b i i
k k k k k ky H x dx H x dx wβ β

Γ Ω Γ
= + +∫ ∫

Additive noiseAdditive noiseObject regionObject region Background regionBackground region

Intensity parametersIntensity parameters

Projection kernelProjection kernel
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Vector Form of Observation ModelVector Form of Observation Model

y H wβ= +

Observation 
data vector
Observation 
data vector

Observation 
matrix

Observation 
matrix

Intensity 
vector
Intensity 
vector

noise vectornoise vector

1

k

K

H

H H

H

 
 
 
 =
 
 
  

O

O

function of 
Ck
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Object Dynamics I: Intensity DynamicsObject Dynamics I: Intensity Dynamics

• Autoregressive Model:

1k k k kB uβ β+ = +

Intensity at 
time k+1
Intensity at 
time k+1

System Matrix 
at time k

System Matrix 
at time k

Intensity at 
time k

Intensity at 
time k

Gaussian NoiseGaussian Noise
(0, )k ku N P=

• Binary model for current experiments
• Need to establish correspondence for more 

complicated cases
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Object Dynamics II: Shape DynamicsObject Dynamics II: Shape Dynamics

• Shape dynamics based on affine transform:

1 ( )k k k kC A C v+ = +

Boundary 
curve at time 

k+1

Boundary 
curve at time 

k+1

Affine
transform at 

time k

Affine
transform at 

time k

Boundary 
curve at time 

k

Boundary 
curve at time 

k

Smooth variation 
to account for 
model error

Smooth variation 
to account for 
model error

• Global motion model for each point on the 
curve
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Variational ReconstructionVariational Reconstruction

• Joint estimation of (C,β) as the minimizer of an 
energy function:

( , )

ˆ ˆ( , ) argmin ( , )
C

C E C
β

β β=

[ ] { ( )11

2 2
1 1( , ) ( , ) || || || || , ( )

k k
k k k k k k k k k k k kQ P

k

E C y H f C C B W C A Cβ β λ ξ β β α−− + +

 
 = − + + − +
  
 

∑ 144244314444244443 1442443

Ed

Data fidelity 
term

Ed

Data fidelity 
term

Es

Spatial shape 
smoothness prior

Es

Spatial shape 
smoothness prior

Ei

Intensity 
dynamics

Ei

Intensity 
dynamics

Et

Shape dynamics: Distance 
between Curves

Et

Shape dynamics: Distance 
between Curves
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Distance between Curves for 
Shape Dynamics

Distance between Curves for 
Shape Dynamics

• Distance between two curves:

1 2

1 2

1 2
( , )

( , ) | ( ) ( ) | p
c c

C C

W C C x x d xφ φ
Π

= −∫

Implicit representation:

negative inside                             

positive outside

Implicit representation:

negative inside                             

positive outside

Exponent p:

p=0 : area of Π(C1,C2)    
p>=1: penalize parts far away 
p=1 in current experiments

Exponent p:

p=0 : area of Π(C1,C2)    
p>=1: penalize parts far away 
p=1 in current experiments

C1

C2

• Incorporation of shape dynamics:

1( , ( ))t k k k
k

E W C A C+= ∑

1

2

1

2

C

C

C

C

φ

φ

→

→
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Solution ApproachSolution Approach

• “Coordinate Descent” between intensity 
parameters β and object boundaries C

Minimize w.r.t  β :  a
low order quadratic 
optimization problem

Minimize w.r.t  β :  a
low order quadratic 
optimization problem

Minimize w.r.t Ck :  evolve 
Ck in the gradient descent 
direction with level set 
methods:

Minimize w.r.t Ck :  evolve 
Ck in the gradient descent 
direction with level set 
methods:

E
dt

dC
kC

k −∇=
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Solution Details I:Solution Details I:

• First variation of data fidelity term Ed w.r.t Ck:

1 1
1( ), , ,

k k k

TM
C d C C KE Q y Y Y Y−  ∇ = − − ∇ ∇ L

Clean Data
Y H β=

Covariance 
matrix

Covariance 
matrix

( ) ( )    if 
0                                if 

k
k

o b i
i k k k k C

C j

H C N k j
Y

k j
β β − =

∇ =
≠

r

• First variation of  spatial smooth prior Es w.r.t Ck:

k kC s CE Nκ∇ =
r

CurvatureCurvature NormalNormal
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Solution Details II:Solution Details II:

• First variation of shape dynamics term Et w.r.t Ck 
when p = 1:

1ˆ 1
ˆ( ( ) ( ) )

k k kk
C t k C k k CC

E C C L Nφ φ
+ +∇ = +

r
144244314243

• Notations: 

1ˆ1 1 1 1

( )
ˆ ˆ ˆ( ), ( ) , ,

kk

k k k

k k k k k k k k CC

A x L x b

C A C C A C C Cφ φ
+− − + +

= +

= = → →

Temporal 
smoothness to 

next curve

Temporal 
smoothness to 

next curve

Temporal 
smoothness to 
previous curve

Temporal 
smoothness to 
previous curve
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Experiment I: 2D + TimeExperiment I: 2D + Time

Experiment setup:

• Observation kernel: line 
integration along a single 
angle at each time instant

• View angle changes over 
time

• Dynamic models Ak,Bk : 
identity transform

• Gaussian noise 27dB

• Sequence size : 64*64*20

Observation data:

Observation at one 
time instant
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True sequence                Our reconstruction

Frame-by-frame recon        3D Tikhonov recon

Experiment I: Dynamic ResultsExperiment I: Dynamic Results

Object 
based, but 

no temporal 
smoothness

temporally 
smoothed, 

but no object 
model
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Time varying intensities

Experiment I: Static ResultsExperiment I: Static Results

Compared with true boundaries: 

k = 1 k = 3 k = 6

k = 9 k = 12 k = 14

k = 16 k = 18 k = 20

True  βo

Estimated βo

True  βb

Estimated   βb
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Experiment II:3D + TimeExperiment II:3D + Time

• Experiment setup
– Beating left and right ventricles from MCAT phantom

– Projection kernel: parallel line integration
– 3 view angles per time instant
– View angles change over time

– Dynamic models Ak,Bk : identity transform

– Gaussian noise: 15 dB

– Sequence size : 32*32*28*32

P.H.Pretorius, W.Xia, M.A.King, B.M.W.Tsui, T.S.Pan, and B.J.Villegas, “ 
Determination of left and right ventriclular volume and ejection fraction using a 
mathematical cardiac torso phantom for gated blood pool SPECT”, J Nucl Med, 1996.
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Experiment II: Projection DataExperiment II: Projection Data

k =1 k =6 k =11 k =16 k =21 k = 26
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Experiment II: ResultsExperiment II: Results

True sequence               Recon sequence
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Experiment II: Intensity CurvesExperiment II: Intensity Curves

Bias due to 
regularization
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ExtensionsExtensions

• Up to now:
– Our approach for object-based dynamic 

tomography
– Modeling object dynamics
– Dynamic shape models assumed known a priori 

up to now.
• Extensions:

– Learning shape dynamics
– Sub-problem: shape matching
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Learning Shape DynamicsLearning Shape Dynamics

• Motivation: 
– Ak maybe unknown in practice.
– Also of interest for tracking applications

• Problem set up:
1 1 1
1 2
2 2 2
1 2

1 2

, , ,
, , ,

, , ,

K

K

M M M
K

C C C
C C C

C C C

 
 
 
 
 
  

L
L

M M M M
L

Inputs:

M training 
sequences

Outputs:

Estimated affine 
transforms: Ak, 
k=1,…,K-1.
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Energy-based MethodEnergy-based Method

• Estimate affine transforms as the minimizer of the 
energy function:

21 1

1 1 1
1 1 1

ˆ( , )
M K K

m m
k k k k

m k k

J W C C λ α α
− −

+ + +
= = =

= + −∑ ∑ ∑
144424443 1442443

Data fidelity: distance 
between shapes

Data fidelity: distance 
between shapes

1 1
ˆ ( )m m

k k kC A C+ +=

Regularization 
term

Regularization 
term

Vector of unknown 
parameters of Ak

Vector of unknown 
parameters of Ak
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Sub-problem: Shape MatchingSub-problem: Shape Matching

• Given a distance measure, estimate an affine transform 
minimizing the distance of two curves C1 and C2:

1 2(; ) arg min ( , ( ; ))A W C A C
α

α α= 14243

Affine 
transform 

Affine 
transform 

Unknown 
parameters to 
be estimated

Unknown 
parameters to 
be estimated

Distance 
between two 

curves

Distance 
between two 

curves Transformed 
curve

Transformed 
curve

2Ĉ
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Experiment III: Shape MatchingExperiment III: Shape Matching

• Training data

Topological 
changes

Topological 
changes

Estimation results
ˆˆ ˆ( )    with 

0.2460 0.9626ˆ
0.8869 0.4780

6.3356ˆ 
4.3744

A x Lx b

L

b

= +

 
=  − 

 
=  

 

Transformed 
curve

Transformed 
curve
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ConclusionsConclusions

• Variational approach for tomographic 
reconstruction of dynamic objects

• Shape dynamics based on distance between 
shapes 

• Curve evolution and level set methods for 
implementation

• Extensions to learning shape dynamics and 
shape matching
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Thank You!Thank You!


